お申し込みから卒業までのステップ

お申し込み

- **1** 下記、詳細ページにアクセスし、お申込みください。
- □ ビジネスデータサイエンス実践力養成講座 https://datascience.co.jp/reskill/biz/
- **)**お申込み確認メールを差し上げます。
- **3** 事務局より、受講環境、受講テキスト等についてご案内致します。

受 講

- 各科目受講後に課題を提出させて頂きます。添削を行い、受講者にフィードバックします。 理解度不足の場合は、再度アーカイブの受講、講師への質問等を行い、理解度を高めます。
- 課題解決事例プレゼンテーションについて受講者自ら課題を設定し解決した事例について 30分程度のプレゼンテーションを行って頂きます。

修了認定要件

要件 1 全科目受講(各科目 90%以上出席)

要件 2 | 各科目演習課題の提出

要件 3 |課題解決プレゼンテーションに合格

合格の場合

修了認定証を発行します。

*統計検定2級取得を無料サポートします。

不合格の場合

- 1. 受講者、メンター、講師と不合格の事由について具体的に協議します。
- 2. 受講不足の科目がある場合は、アーカイブ受講をして頂きます。
- 3. プレゼンテーション資料の再作成をして頂きます。
- 4. 総合的に審査し、合格と認められた場合は修了認定証を発行します。

お支払い方法

法人によるお申込みの場合は、締日払いも可能です。

DSI DataScienceInstitute

会社概要

会社名 株式会社データサイエンス研究所

代表取締役

〒102-0093 東京都千代田区平河町2丁目5番5号 全国旅館会館

TEL: 03-3265-3908 FAX: 03-3221-3904

https://datascience.co.jp/

データサイエンスに関連する研修・コンサルティング

データサイエンス実践力養成講座 第四次産業革命スキル習得講座

BUSINESS DATA SCIENCE

実践的解析力・ 課題解決力の習得

ビジネスにおける実践的解析力、問題解決力の 習得を目指します。

1. ライブ受講(研修室・オンライン)

オンラインによるライブ講義によりどこでも学習できます。

2. オンデマンド受講

オンデマンド講座は、ご都合に合わせいつでも受講が可能です。

ライブ受講 (研修室・オンライン)

- 専用ライブ配信用スタジオ により、臨場感のある受講が可能です。
- 講義内容はアーカイブされますので、 ご都合に合わせた受講、復習が可能です。

受講時間 9:30 ~ 16:30

完全オンラインによる オンデマンド受講

- 講義内容への質問
- 受講中、受講後いつでも質問が可能です。 講師が迅速に対応します。
- 個別メンターによる直接指導
- 学習状況、及び受講者の希望に合わせた 個別メンタリング(メール、ZOOM等)を 行います。

統計検定2級(日本統計学会公式認定) 取得をサポートします。

修了認定者は、統計検定2級対応講座 (約2日間)の無料受講が可能です。 過去出題問題の解説・演習、 質問対応等により、統計検定2級の 取得をサポートします。

受講対象者

- □ 業務分野に合致したデータ解析手法を習得したい方
- □ 実践的解析力・問題解決力を習得したい方
- □ オンラインによる受講を希望される方
- 基本的なEXCELの操作のできる方
- □ 分析初心者の方も受講可能です。 (特に高度な数学の知識は不要です

個人向け

受講料の 70% (最大) 給付されます。

####=56 https://datascience.co.jp/reskill/benefit/

事業主向け

受講料の60~88%、及び賃金助成が受けられます。 ####= https://datascience.co.jp/reskill/subsidy/

第四次産業革命スキル習得講座とは?

「第四次産業革命スキル習得講座認定制度」(通称「Reスキル講座」)は、IT・データを中心とした将来の成長が強く見込まれ、雇用創出に貢献する 分野において、社会人が高度な専門性を身に付けてキャリアアップを図る、専門的・実践的な教育訓練講座を経済産業大臣が認定する制度です。

ビジネス データサイエンス実践力養成講座

BUSINESS DATA SCIENCE

ビジネス分野に必須のデータサイエンスを実践的・効率的に習得

- 本講座はビジネス分野におけるデータサイエンス実践力養成講座です。 ビジネス分野において用いられる解析手法のしくみ・活用方法の理解と共に、 ビジネス分野の特性に合わせたデータを用いた具体的演習により、 実践的解析力、問題解決力の習得を目指します。
- 修了認定者には、統計検定2級取得を無料サポートします。

料金 50万円(税込)

修了時間 100時間(4ヶ月)

講師陣 伊藤嘉朗株式会社データサイエンス研究所所長

略歴 | 早稲田大学大学院修了。

(社)日本能率協会、産能大学、早稲田大学、中央学院大学等 講師を歴任。専門分野はマーケティング、統計学、多変量解 析。数多くの企業・団体において、データ分析に関わる研修 理等、数多くのコンサルティングを実施。現在、明治大学に 及びコンサルティングを実施。

請園 正敏 国立精神・神経医療研究センター

略歷|明治学院大学大学院博士課程修了、博士(心理学) 理化学研究所、東北大学東北大学大学院医学系研究科を 経て、現在、国立精神・神経医療研究センターにてリサー チフェロー。医療データ等についてSPSS、R等を用いた統 計解析について指導。

野口怜 明治大学 講師(データサイエンス)

略歴 | 東京大学大学院博士課程修了、博士(科学)。 専門分野はデータマイニング全般。民間企業の製造現場に おいて実践的なデータマイニング(機械学習)による品質管 てデータサイエンス教育に従事。

藏本知子 立教大学 講師

□ 物件情報から中古マンションの価格を予測する。

年度別に比較し問題点を明らかにする。

略歴 | 学習院大学大学院修了。専門分野は社会心理学。 大学では社会科学情報処理科目等において、EXCEL、 SPSS を用いたデータ解析手法に関する講義を担当。統計 学の実務への活用能力を養成するため、各解析手法につい て理論に偏らない実践的な活用方法を指導している。

URL https://datascience.co.jp/reskill/biz/

演習事例

□ 販促活動に必要な景品の数を求める。

□ 駅前コンビニと売上に影響を与える諸要因について検討する。

□ 売上実績、営業員数、広告費、人口データから、

売上高を予測するモデルを構築する。

□ 売上高を支店別に前年度実績と比較し問題点を明らかにする。 □ 販促活動に基づき来店客数を予測する。 ■ 新製品の好感度について男女による違いについて比較する。 □ 製品評価に与える因子について分析する。 □ 地域による売上高の違いについて検討する。 □ 顧客情報から顧客離反要因について分析する。 □ DMの送付前後による売上高の違いについて検討する。 □ 小売店における同時購入アイテムについて分析する。 □ 地域・年代による企業好感度の違いの有無について検討する。 □ ソーシャルメディアの口コミについて分析する。 ■ 新製品のテレビ CM 前後による評価の違いについて調べる。 □ 顧客属性からメールの開封率を予測する。 □ 主力製品の知名度を、競合他社と比較する。 □ コンサート会場アンケートから、 満足度と様々な要因との関係を明らかにする。 □ メルマガの配信前後による商品好感度の違いについて判断する。 □ 年度別市場規模推移から次年度以降を予測する。 □ 売上高に対する広告費の効果について地域別、男女別に検討する。 □ 消費支出額とトレンドから売上高を予測する。 □ 売上高と、広告費、人口、DM発送数の関係について検討する。 □ 得意先別に、売上高の構造について

カリキュラム			
科目	内	容	
実践統計学	1.	データの視覚化	箱ひげ図、ヒストグラム、散布図
	2.	基本統計	平均、分散、標準偏差、Z値、中央値、中央絶対偏差
	3.	分布	正規分布、t分布
	4.	母集団と標本	検定のしくみ、2種類の過誤
	5.	t 検定	有意確率、区間推定、効果量、検出力
	6.	カイ2乗検定	カイ2乗分布、効果量
	7.	相関分析	散布図、積率相関係数、交絡要因と偏相関係数
	8.	重回帰分析	標準化偏回帰係数、決定係数、交互作用のある場合
ビジネスにおける データ分析の実践	1.	Rとは	R、Rstudio のインストール
	2.	Rの基本的な使用方法	Rstudio の使用方法、ライブラリー、データの読込み方法
	3.	基本統計量、グラフ	平均、分散、標準偏差、Z值(偏差值
	4.	グラフと外れ値	箱ひげ図、ヒストグラム、散布図、外れ値の検出方法
	5.	t 検定	有意確率、区間推定、効果量、検定力、対応の有無
		2種類の過誤とサンプルサイズ	効果量・検定力・有意水準によるサンプルサイズの設定方法
	7.	ノンパラメトリック検定	ウイルコクソン順位和検定、符号付順位和検定
	8.	重回帰分析	ダミー回帰
		ロジスティック回帰分析	予測値、オッズ比
		主成分分析	主成分負荷量、主成分スコア
ビッグデータ解析		Python の基礎	 Python の導入、Jupyter Notebook の使い方、各種ライブラリの紹介
		データ加工の基本	 データベースの基礎、複数データの結合、ダミー変数化、カテゴリー値化
		教師あり学習:数値予測	すーッパースの差域、後数アーッの指古、ツミーを数化、カアコリー 値化重回帰分析、ニューラルネットワーク、データの標準化
	3.	教師の7子首・数順丁/側	重四帰方析、ニューラルイットソーク、データの標準化オーバーフィッティング(過学習)と多重共線性、モデルの評価(決定係数)
	4.	教師あり学習:クラス分類	ロジスティック回帰、決定木、ランダムフォレスト (アンサンブル学習)
			サポートベクターマシン、モデルの評価 (Accurary, Precision, Recall, F値)
	5.	教師なし学習:クラスタリング	• 非階層的クラスタリング (k-means 法)、階層的クラスタリング
			● モデルの評価 (Elbow 法、シルエット係数)
	6.	教師なし学習:アソシエーション分析	● Aprioriによるアソシエーション分析、モデルの評価 (支持度、確信度、リフト値)
	7.	自然言語処理とテキストマイニング	• 形態素解析、頻出語分析とジップの法則、単語のベクトル化
実践力の養成	1.	デジタルマーケティングとは	デジタル時代の購買行動データドリブンとオムニチャネル
		顧客分類と成約要因の分析	ロジスティック回帰、決定木による成約要因の分析
	۷.	服告力泉 こ 成形安西ツカヤ	◆ 不均衡データへの対応◆ クラスタリングによる顧客分類
			● クラスタリング x 決定木によるグループ間の差異分析
	3.	売上と広告効果の分析	• 時系列データの可視化 • マーケティングミックスモデリング
			• 説明変数の追加、加工によるモデルチューニング
			残存効果と非線形性の考慮考慮したマーケティングミックスモデリング過学習への対応ニューラルネットワークによる精度向
	_		
	4.	アソシエーション分析による 併売分析	One Hotベクトルへのデータ加工アソシエーション分析の評価指標アソシエーション分析による併売ルール抽出
	_		
	5.	レコメンデーションモデルの構築	ユーザーベース協調フィルタリングによるレコメンデーション
	6.	EC サイトレビュー分析	 形態素解析による単語分割 頻出単語の集計頻度集計
	_	- 10 hale	ワードクラウドによる特徴語の可視化利用可能なテキストデータソース
	7.	画像解析	1) 画像解析とビジネスデータサイエンスの基礎 2) Pythonを使った基本的な画像処理
		*****	3) 特徴抽出と画像分類 4) 深層学習と画像解析
	8.	音声解析	1) 音声解析とビジネスデータサイエンスの基礎 2) Pythonを使った基本的な音声処理
			3) 音声分類と音声情報処理 4) 深層学習と音声解析
	9.	オープンデータ	1) オープンデータとビジネスデータサイエンスの基礎
			2) Pythonによるオープンデータの取得と前処理
			3) オープンデータを利用した分析技術
			4) 機械学習とオープンデータ
	10	アンケート調査法	調査の分類、バイアス、質問項目の作成法
	10.	1 µ¬ <u>-=</u> ./43	 回答形式(単一回答、複数回答、自由記述)、尺度化の方法(順位尺度、段階尺度、SD法、VA
			• 調査結果の集計方法(箱ひげ図、ヒストグラムによる外れ値の検討、散布図による把握)
			平均値の違いについての検討(†検定、対応の有無、有意確率、効果量、検定力) クロス集計表による検討(カイス乗検定 有意確率 効果量)

クロス集計表による検討(カイ2乗検定、有意確率、効果量)

• サンプルサイズの設定方法(効果量、検定力、有意水準の設定)

• 時系列分析析(移動平均法、季節指数、TCSI分離法による予測)

• 統計的意思決定法

得意先別データの分析

• 2群以上の因果関係の検討(相関分析、重回帰分析、交絡要因、ダミー変数)

• 回帰モデルによる予測(トレンド、季節指数を用いた予測、ダミー変数を用いた予測)

• 階層化意思決定法 (AHP)

人事データの分析

• 対数グラフによる観察法(差と比率の違い、グラフから予測する方法)

修了認定

課題解決プレゼンテーション

13. 社内データの分析方法

11. 販売予測・需要予測

12. 意思決定法